Polymer bearing materials DADYNE DDK05

RoHS

This product is an environmentally friendly "Lead free bearing." This compound bearing, a "perfect oilless bearing" that does not require any lubricant at all uses polytetrafluoroethylene (PTFE) resin, has excellent low friction characteristics and also optimizes metal properties such as strength and dimensional stability.

Features

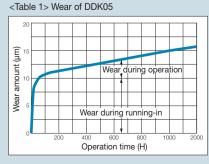
- (1) The bearing surface has such low a coefficient of static and dynamic friction that the surface runs smoothly without lubrication, and in addition, the so-called stick and slip phenomenon is eliminated. The bearing can be used in oil as well.
- 2 The operating temperature range extends from -200°C to +280°C.
- ③ Adaptable to operations under high-load, impact load, intermittent operation and reciprocating motion.
- ④ Free from electrostatic induction (When installed, each bearing has an electrical resistance of 1Ω to 10Ω per 1 cm² wide contact area.)
- (5) The bearing surface is highly resistant to most industrial chemicals and solvents such as petroleum and alcohol.
- (6) The bearing will not damage the surface of engaging component (shaft).
- ⑦ Extended service life.
- (8) The bearing is light and thin (max. 3 mm thick), requiring little space and permits compact equipment design.
- (9) The bearing minimizes operating noise.

Major Superior Points to Roller Bearing

- ① DDK05 bearing is free from the skew problem.
- ② DDK05 bearing can also be used for sliding motion in the axial direction.
- ③ DDK05 bearing allows very compact equipment design that does not occupy wide space.
- ④ In general the bearing price is competitive compared to rolling element bearings.
- (5) The bearing exhibits exceptional resistance against fretting corrosion.

Superior Points to Roller Bearing

(1) Permitted bearing pressure is high.


- (2) The rolling element bearings are inferior to Daido plain bearings in conditions of high-load, low speed operation, reciprocating and intermittent motion where boundary lubrication condition cannot be assured and further at high temperature (+280°C) or low temperature (-200°C).
- ③ DDK05 bearing can be used in various liquids and gases, or in a vacuum.
- (4) Standard bearings are stocked and are available for quick delivery.

Physical Characteristics (Typical Values)

Compressive Strength (MPa)	304
Coefficient of Linear Thermal Expansion (10-6/°C)	11 (direction parallel to bearing face), 30 (thickness direction)
Heat Transfer Coefficient (W/m-k)	42
Service Temperature Limit (°C)	-200~+280
Friction Coefficient	0.04 to 0.1 (below 6 m/min, 3.5 to 55 MPa)
	0.06 to 0.18 (6 to 300 m/min, below 3.5 MPa)

Friction properties/characteristics of DDK05

The graph shows that during the running in stage, part of the surface layer rapidly transfers to the shaft surface to make to the irregularity flat and form a smooth low-wear and low-friction surface. During operation when the surface layer consisting of PTFE mixture becomes thinner friction between the metals of the bearing and the shaft temporarily occurs. Then the PTFE mixture expands due to the heat generated by the friction and the mixture is pushed out from the porous intermediate layer and supplied to the bearing surface very slowly. Therefore no wear occurs on the shaft.

Designing DDK05

(1) PV value and wear

The service life of DDK05 is determined primarily by bearing load and PV value. The term PV value refers to the product of a pressure (P) in MPa and a velocity (V) in m/min. A bearing with a PV value of 206 MPa m/min can only operate for short periods of time. The maximum PV value for a bearing that be used for continuous operation is 103 MPa m/min. Testing has shown that the rate of wear to a DDK05 after breaking in is roughly proportional to its PV value up to 0.04-0.05 mm of wear. Fig. 1 shows the relationship between service life and PV value.

(2) Basic relationship between service life and PV value (PV value in MPa·m/min)

Bushings (unidirectional loading)

Service life in hours (H) = -	39×10³×f×m	-0
	PV	-0

NB: The term "unidirectional loading" refers to bearing loads applied to a fixed bushing by an axle that is either rotating or sliding.

Bushings (rotational loading)

Service life in hours (H) = -	78×10³×f×m	-0
	PV	-0

NB: The term "rotational loading" refers to bearing loads applied to a rotating bushing by a fixed axle.

Thrust washer

Service life in hours (H) = -	25×10³×f×m	-0
	PV	-0

NB: Refer to Table 2 on page 56 and Table 3 on page 57 for values of the coefficients f, m, and C.

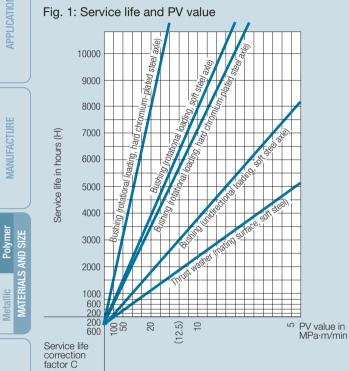
Prior to breaking in the bearing

Photographic cross-section of a DDK05 after breaking in and operating for a certain period of time.

③ Formula for calculating (PV value in MPa·m/min)

For rotational loading

Bushing	Thrust washer
$V=\pi dN/10^{3}$	$V = \pi (D + d) N / 2 \times 10^{3}$
P=W/Ld	$P=W/(D^2-d^2)\pi\times 4$
PV=πWN/10 ³ L	PV=2WN/10 ³ •(D-d)


V : rotating speed in m/min,

- π : ratio of the circumference to the diameter,
- d : inner diameter in mm

D : outer diameter in mm,

- P : surface pressure in MPa
- W: load in N,
- N : rotational speed in rpm
- NB1: During oscillating movement, the articulation θ in degrees (°) is calculated using a rotational speed N of $2\theta C/360$, where C is the cycles per minute.
- NB2: During axial movement. V is the sliding speed in meters per minute.

APPLICATION

<Table1> Allowable load (U)

Types of loading	U MPa
 Static loading with virtually no movement or an extremely slow movement, where V≒0. 	137.0
2 Rotational or oscillating movement, provided that the load affecting the DDK05 does not move.	55.0
3 When the DDK05 is subject to alternating or variable loads, the allowable load varies per the number of changes in loading that occur while the bearing is in use.	
(a) 10⁵ times or less (b) 10 ⁷ times or more	27.5 13.7

(5) Operating factors (f)

<Table 2> Operating factors (f)

Operating conditions	Housing properties	Ambient temperature of axle in °C										
	riddaing properties	25	60	100	150	200	280					
	For material with ordinary heat conductivity	1	0.8	0.6	0.4	0.2	0.1					
Continuously dry conditions	For material with poor heat conductivity	0.5	0.4	0.3	0.2	0.1	-					
Continuously dry conditions	For non-metallic housings with poor heat conductivity	0.3	0.3	0.2	0.1	-	_					
Intermittently dry conditions (No more than two minutes of operation, followed by two minutes or more of rest.)	For material with ordinary heat conductivity	2	1.6	1.2	0.8	0.4	0.2					
When continuously immersed in	water	2	1.5	0.6	-	-	-					
When alternating between immer	When alternating between immersion in water and dry conditions											
When continuously immersed in fluid	When continuously immersed in fluids other than water (excluding lubricants)						0.1					

④ Axle (mating surface) surface factor (m) and service life correction factor (C) The surface factor (m) is applicable in cases where

the mating surface roughness is equivalent or better to the former Rmax $3.2 \ \mu$ m. In many cases, the surface finish is rougher than this and will require additional polishing to ensure the necessary surface quality.

<Table3> Axle (mating surface) surface factor (m) and service life correction factor (C)

Material	Axle surface factor (m)	Service life correction factor (C)	
Steel			
Soft steel	1	200	
Hardened steel	1	200	
Nitrided steel	1	200	
Cast iron	1	200	
Stainless steel	2	200	
Thermal spray stainless steel	1	200	
Non-ferrous			
Anodized aluminum	0.4	200	
Hard anodized aluminum (0.025-mm coating)	3	600	
Bronze and copper alloys	0.2	200	
Galvanized steel (0.013-mm coati	ng or more	e)	
Hard chromium	2	600	
Lead	1.5	600	
Tin-nickel	1.2	600	
Nickel	0.2	600	
Cadmium	0.2	600	
Zinc	0.2	600	
Thermal spray tungsten carbide	3	600	
Phosphate-coated steel	0.2	300	

NB: Refer to Fig. 11 on page 152 for the relationship between mating surface roughness and wear.

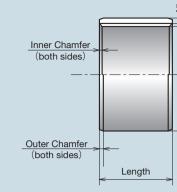
ORATE PROFILE

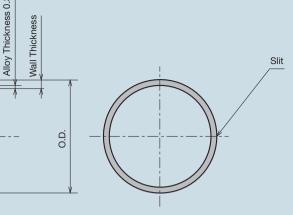
	APPLICATION
	MANUFACTURE
S AND SIZE	Polymer
MATERIALS	Metallic
	PLANNING
	CORPORATE PROFILE
	SPECIFICATION SHEET

⁽⁴⁾ **Load-bearing capacity (U)** Although actual load-bearing capacity with vary with load characteristics, the maximum load that can be supported with DDK05 is as follows.

K5B DDK05 Bushing (Bushing Inner Diameter: 3 to 28 mm)

Designation of Part Number

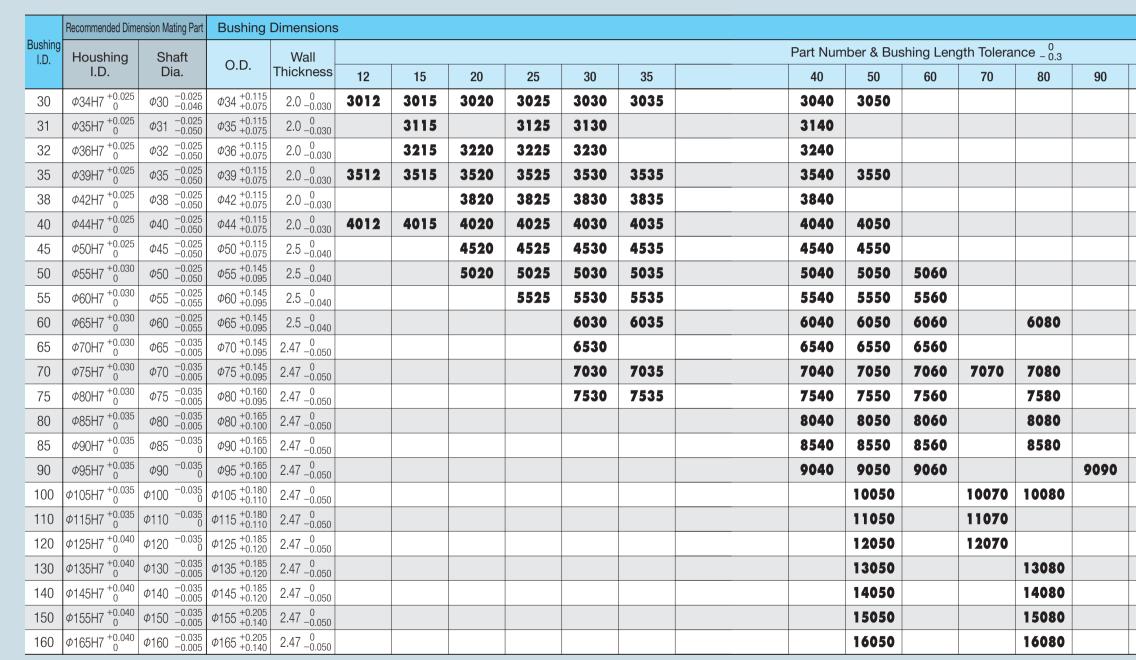

<u>K5</u> <u>B</u> <u>OO</u> <u>OO</u>


K5B 0303

— Please specify by part number.

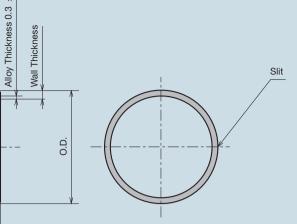
		ee opeen;													Γ	1		((Unit : mm)
	Recommended Dime	nsion Mating Part	Bushing	Dimension	S														
Bushing I.D.	Houshing	Shaft	O.D.	Wall							Part Num	ber & Bu	shing Len	gth Tolera	nce _ 0_0.3				Bushing I.D.
	I.D.	Dia.	0.D.	Thickness	3	4	5	6	7	8	10	12	15	20	25	30	35	40	
3	Φ5H7 ^{+0.012} 0	Φ3 ^{-0.025} -0.035	Φ5 ^{+0.047} +0.017	1.0 0	0303	0304	0305	0306											3
4	Φ6H7 ^{+0.012} 0	$\phi 4 {}^{-0.025}_{-0.037}$	Φ6 ^{+0.047} +0.017			0404	0405	0406		0408									4
5	Φ7H7 ^{+0.015} 0	$\phi 5 {}^{-0.025}_{-0.037}$	φ7 ^{+0.053} +0.023			0504	0505	0506		0508									5
6	Φ8H7 ^{+0.015} 0	$\phi_{6\ -0.025\ -0.037}$	Φ8 ^{+0.053} +0.023			0604	0605	0606	0607	0608	 0610	0612							6
7	Φ9H7 ^{+0.015} 0	$\phi7 \ {}^{-0.025}_{-0.040}$	Φ9 ^{+0.053} +0.023				0705	0706	0707	0708	0710	0712							7
8	Φ10H7 ^{+0.015} 0	01010	Φ10 ^{+0.055} +0.025				0805	0806	0807	0808	0810	0812	0815						8
9	Φ11H7 ^{+0.018} 0	Φ9 ^{-0.025} -0.040	Φ11 ^{+0.060} +0.030					0906			 0910								9
10	Φ12H7 ^{+0.018} 0		Φ12 ^{+0.060} +0.030					1006	1007	1008	 1010	1012	1015	1020					10
12	Φ14H7 ^{+0.018} 0	Φ12 ^{-0.025} -0.043	Φ14 ^{+0.060} +0.030					1206		1208	 1210	1212	1215	1220					12
13	Ф15H7 ^{+0.018} 0	Ф13 ^{-0.025} -0.043	Φ15 ^{+0.063} _{+0.033}							1308	 1310	1312	1315	1320					13
14	Ф16Н7 ^{+0.018} 0	Φ14 ^{-0.025} -0.043	Φ16 ^{+0.063} _{+0.033}							1408	1410	1412	1415	1420				L	14
15	Φ17H7 ^{+0.018} 0	Φ15 ^{-0.025} -0.043	Φ17 ^{+0.073} +0.038							1508	1510	1512	1515	1520	1525				15
16	Φ18H7 ^{+0.018} 0	Φ16 ^{-0.025} -0.043	Φ18 ^{+0.073} _{+0.038}								 1610	1612	1615	1620	1625			L	16
17	Ф19H7 ^{+0.021} 0	ϕ 17 $^{-0.025}_{-0.043}$	Φ19 ^{+0.081} +0.046	-							1710		1715						17
18	Φ20H7 ^{+0.021} 0	Φ18 ^{-0.025} -0.043	Φ20 ^{+0.081} +0.046								 1810	1812	1815	1820	1825	1830			18
19	Ф22H7 ^{+0.021} 0	ϕ 19 $^{-0.025}_{-0.046}$	Φ22 ^{+0.081} +0.046								 1910		1915	1920					19
20	Ф23H7 ^{+0.021} 0	$\phi_{20} {}^{-0.025}_{-0.046}$	Ф23 ^{+0.081} +0.046	-							2010	2012	2015	2020	2025	2030			20
22	Ф25H7 ^{+0.021} 0	$\phi_{22} {}^{-0.025}_{-0.046}$	Φ25 ^{+0.086} +0.051								2210	2212	2215	2220	2225	2230			22
24	Ф27H7 ^{+0.021} 0	Φ24 ^{-0.025} -0.046	Φ27 ^{+0.086} +0.051										2415	2420	2425	2430			24
25	Ф28H7 ^{+0.021} 0	$\phi_{25} {}^{-0.025}_{-0.046}$	Φ28 ^{+0.093} +0.056								2510	2512	2515	2520	2525	2530	2535		25
26	ФЗОН7 ^{+0.021} 0	Φ26 ^{-0.025} -0.046	ФЗО ^{+0.115} +0.075										2615	2620	2625	2630			26
28	Ф32H7 ^{+0.025} 0	$\phi_{28} {}^{-0.025}_{-0.046}$	ФЗ2 ^{+0.115} +0.075	2.0 0								2812	2815	2820	2825	2830			28

K5B DDK05 Bushing (Bushing Inner Diameter: 30 to 160 mm)


Designation of Part Number

- **Bushing Length**
 - **Bushing Nominal I.D.** Bushing
 - **Product Symbol**

K5B 3012


Please specify by part number.

Pb Free

RoHS

SPECIF

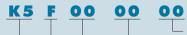
<u>5</u>0.1

Inner Chamfer (both sides)

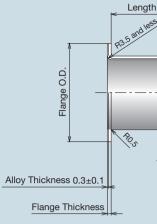
Outer Chamfer (both sides)

Length*

	(1									
		Bushing I.D.								
95	100									
		30								
		31								
		32								
		35								
		38								
		40								
		45								
		50								
		55								
		60								
		65								
		70								
		75								
		80								
		85								
		90								
10095	100100	100								
11095	110100	110								
12095	120100	120								
	130100	130								
	140100	140								
	150100	150								
	160100	160								
	*Width toler	ance is :								

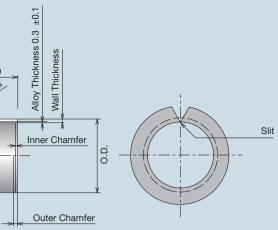

~ID 110-8.3 OD 120~-0.4

61


K5F DDK05 Flanged Bushing (Bushing Inner Diameter: 3 to 60 mm)

Designation of Part Number

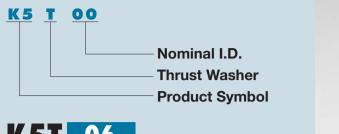
Flange O.D. **Bushing Length Bushing Nominal I.D.** Flanged Bushing **Product Symbol** K5F 0303-7

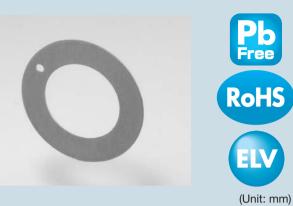


Please specify by part number.

		ise specify	by part n	umper.																(Un	nit: mm)
	Recommended Dime	ension Mating Part	Bushing D	imensions																	
Bushing I.D.	Houshing	Shaft	Flange	Flange		Wall					P	art Number &	Bushin	g Lengtl	h Tolerance _)).3				E	Bushing I.D.
1.0.	I.D.	Dia.	O.D.	Thickness	O.D.	Thickness	3	4	5	6		7 8	10	12	15 20	25	30	40	50	60	1.0.
3	Φ4.6H7 ^{+0.012} 0	Φ3 ^{-0.025} -0.035	$\phi7 {}^{0}_{-0.8}$	0.8 0	Φ4.6 +0.047 +0.017	0.8 0	0303-7		0305-7												3
4	Φ5.6H7 ^{+0.012} 0	ϕ 4 $^{-0.025}_{-0.037}$	Φ9 ⁰ _{-0.8}	0.8 0	Φ5.6 ^{+0.047} +0.017	0.8 _0_025		0404-9		0406-9											4
5	Φ7H7 ^{+0.015} 0	$\phi5 {}^{-0.025}_{-0.037}$	Φ10 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ7 ^{+0.053} +0.023	$1.0 \ {}^{0}_{-0.025}$		0504-10	0505-10	0506-10											5
6	Φ8H7 ^{+0.015}		Ф12 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ8 ^{+0.053} +0.023	1.0 ⁰ _{-0.025}			0605-12	0606-12	0	607-12 0608-1	2 0610-12								6
7	Φ9H7 0 ^{+0.015}	$\phi7 {}^{-0.025}_{-0.040}$	Ф13 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ9 ^{+0.053} +0.023	1.0 ⁰ _{-0.025}			0705-13		0	707-13	0710-13	0712-13							7
8	Φ10H7 ^{+0.015} 0	\$\$\phi_0.025\$ \$-0.040\$	Ф15 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ10 ^{+0.055} +0.025	1.0 ⁰ _{-0.025}				0806-15		0808-1	5 0810-15	0812-15							8
10	Φ12H7 ^{+0.018} 0	Φ10 ^{-0.025} -0.040	Ф18 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ12 ^{+0.060} +0.030	1.0 ⁰ _{-0.025}				1006-18	1	007-18 1008-1	8 1010-18	1012-18	1015-18						10
12	Φ14H7 ^{+0.018} 0	Φ12 ^{-0.025} -0.043	Ф20 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ14 ^{+0.060} +0.030	1.0 ⁰ _{-0.025}				1206-20	1	207-20 1208-2	0 1210-20	1212-20	1215-20 1220-2	0					12
14	Φ16H7 ^{+0.018} 0	Φ14 ^{-0.025} -0.043	Φ22 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ16 ^{+0.063} +0.033	1.0 ⁰ _{-0.025}							1410-22	1412-22	1415-22 1420-2	2					14
15	Φ17H7 ^{+0.018} 0	Φ15 ^{-0.025} -0.043	Ф23 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ17 ^{+0.073} +0.038	1.0 0 -0.025							1510-23	1512-23	1515-23 1520-2	3 1525-23	}				15
16	Φ18H7 ^{+0.018} 0	Φ16 ^{-0.025} _{-0.043}	Φ24 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ18 ^{+0.073} _{+0.038}	1.0 ⁰ _{-0.025}							1610-24	1612-24	1615-24 1620-2	4 1625-24					16
18	Φ20H7 ^{+0.021} 0	Φ18 ^{-0.025} _{-0.043}	Ф26 ⁰ _{-0.8}	1.0 ⁰ _{-0.15}	Φ20 ^{+0.081} +0.046	1.0 ⁰ _{-0.025}							1810-26	1812-26	1815-26 1820-2	6 1825-26	j				18
20	Φ23H7 ^{+0.021} 0	<i>Φ</i> 20 ^{-0.025} -0.046	Φ31 _0	1.5 ⁰ _{-0.15}	Φ23 ^{+0.081} +0.046	1.5 ⁰ _{-0.030}									2015-31 2020-3						20
22	Φ25H7 ^{+0.021} 0	Φ22 -0.025 -0.046	Φ33 ⁰ _{-0.8}	1.5 ⁰ _{-0.15}	Φ25 ^{+0.086} +0.051	1.5 ⁰ _{-0.030}							2210-33		2215-33 2220-3						22
24	Φ27H7 ^{+0.021} 0	<i>Φ</i> 24 ^{-0.025} -0.046	Φ35 ⁰ _{-0.8}	1.5 ⁰ _{-0.15}	Φ27 +0.086 +0.051	1.5 _00									2415-35 2420-3	_					24
25	Φ28H7 ^{+0.021} 0	Φ25 ^{-0.025} -0.046	Φ36 ⁰ _{-0.8}	1.5 ⁰ _{-0.15}	Φ28 +0.093 +0.056	1.5 ⁰ _{-0.030}							2510-36		2515-36 2520-3		2530-36				25
26	Φ30H7 ^{+0.021} 0	<i>Φ</i> 26 ^{-0.025} -0.046	Φ38 ⁰ _{-0.8}	2.0 ⁰ _{-0.15}	Φ30 +0.115 +0.075	2.0 _0_0									2615-38 2620-3	_					26
28	Φ32H7 ^{+0.025} 0	<i>Φ</i> 28 ^{-0.025} -0.046	<i>Φ</i> 40 ⁰ _{-0.8}	2.0 0	Φ32 +0.115 +0.075	2.0 0 -0.030									2815-40 2820-4		2830-40				28
30	Φ34H7 ^{+0.025} 0	Φ30 -0.025 -0.046	Φ420	2.0 0	Φ34 +0.115 +0.075	2.0 0 -0.030								3012-42	3015-42 3020-4	_		3040-42			30
31	Φ35H7 ^{+0.025} 0		<i>Φ</i> 45 ⁰ _{-0.8}	2.0 0	Φ35 +0.115 +0.075	$2.0 \stackrel{0}{_{-0.030}}$										3125-45					31
32	Φ36H7 ^{+0.025} +0.025	Φ32 -0.025 -0.050	<i>Φ</i> 46 ⁰ _{-0.8}	2.0 0	Φ36 +0.115 +0.075	2.0 0										6 3225-46					32
35	Φ39H7 ^{+0.025} +0.025	\$\$\phi_0.025 \\ -0.050 \\ -0.025 \\ -0.050 \\ -0.025 \\	$\phi 49 \stackrel{0}{-0.8}$	2.0 0	Φ39 +0.115 +0.075	$2.0 \stackrel{0}{_{-0.030}}$								3512-49		9 3525-49			3550-49		35
38	Φ42H7 ^{+0.025} +0.025	φ38 -0.025 -0.050	0	2.0 0											3820-5	_		3840-52			38
40	φ44H7 ^{+0.025} +0.025		$\phi 54 \stackrel{0}{-0.8}$	2.0 0	φ44 +0.115 +0.075	2.0 0								4012-54		4 4025-54					40
45	Φ50H7 ^{+0.025} 0	φ45 ^{-0.025} -0.050	$\phi_{60} \stackrel{0}{_{-0.8}}$	2.5 ⁰ _{-0.15}	Φ50 +0.115 +0.075	2.5 0 -0.040										0 4525-60					45
50	<i>Φ</i> 55H7 ^{+0.030} ₀	$\phi 50 \stackrel{-0.025}{-0.050}$	$\phi_{65} \stackrel{0}{_{-0.8}}$	$2.5 \stackrel{0}{_{-0.15}}$	<i>Φ</i> 55 +0.145 +0.095	$2.5 \begin{array}{c} 0 \\ -0.040 \end{array}$									5020-6	5	5030-65			5060-65	
55	$\phi_{60H7} \stackrel{+0.030}{_{0}}$	$\phi_{55} \stackrel{-0.025}{-0.050}$	$\Psi 10 -0.8$	$2.5 \stackrel{0}{_{-0.15}}$	<i>Φ</i> 60 +0.145 +0.095	2.5 _0_040											5530-70				
60	Φ65H7 ^{+0.030} 0	Φ60 ^{-0.025} -0.050	Φ75 ⁰ _{-0.8}	2.5 ⁰ _{-0.15}	Φ65 ^{+0.145} +0.095	2.5 ⁰ _{-0.040}											6030-75	6040-75	6	5060-75	60

APPLICATION

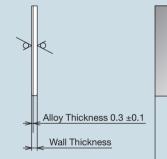

MANUFACTURE

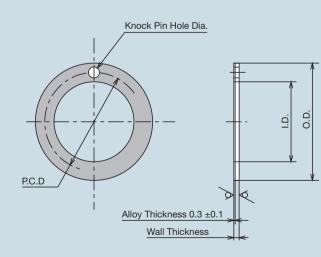

K5T DDK05Thrust Washer

Designation of Part Number


K5T 06

Please specify by part number.




Nominal	Part Number	I.D.	O.D. Thickness		Knock Pin Hole		Housing	
I.D.	Part Number	I.D.	0.D.	THICKNESS	Dia.	P. C. D	Recess Depth	
6	K5T06	8 +0.25	16 _0.25		+0.20	12 ±0.12		
8	K5T08	10 ^{+0.25}	18 _0	1.100 0	1.100 0	14 ±0.12		
10	K5T10	12 ^{+0.25}	24 _0.25		1.625 ^{+0.25}	18 ±0.12		
12	K5T12	14 ^{+0.25}	26 _0.25	1.5 ^{-0.03} -0.08		20 ±0.12		
14	K5T14	16 ^{+0.25}	30 _{-0.25}		2.125 ^{+0.25}	23 ±0.12		
16	K5T16	18 ^{+0.25}	32 _{-0.25}			25 ±0.12	1.0 ^{+0.20} -0.05	
18	K5T18	20 ^{+0.25}	36 - _{0.25}		3.125 ^{+0.25}	28 ±0.12		
20	K5T20	22 ^{+0.25}	38 ⁰ -0.25			30 ±0.12		
22	K5T22	24 0+0.25	42 _0.25			33 ±0.12		
24	K5T24	26 ^{+0.25}	44 _0.25			35 ±0.12		
25	K5T25	28 ^{+0.25}	48 ⁰ _{-0.25}			38 ±0.12		
30	K5T30	32 ^{+0.25}	54 _0.25			43 ±0.12		
35	K5T35	38 ^{+0.25}	62 _0.25			4.125 ^{+0.25}	50 ±0.12	
40	K5T40	42 +0.25	66 ⁰ _0.25		4.120 0	54 ±0.12		
45	K5T45	48 0 +0.25	74 _0.25	2.0 ^{-0.03} -0.08		61 ±0.12	1.5 ^{+0.20} -0.05	
50	K5T50	52 ^{+0.25}	78 -0.25			65 ±0.12	$1.5 \begin{array}{c} +0.20 \\ -0.05 \end{array}$	

K5P DDK05 Slide Plate

(Unit: mm)			
Part Number	Thickness	Width	Length
K5P100	$1.0 \ ^{+0.03}_{-0.13}$	80 +2.0	
K5P150	$1.5 \begin{array}{c} +0.03 \\ -0.13 \end{array}$	90 +2.0	
K5P200	$2.0 \begin{array}{c} +0.03 \\ -0.13 \end{array}$	100 +2.0	500 ^{+10.0} ₀
K5P250	$2.5 \begin{array}{c} -0.05 \\ -0.15 \end{array}$	100 +2.0	
K5P300	3.0 _0.1	100 ^{+2.0}	

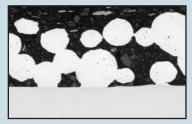
APPLICATION

Polymer bearing materials

DAIDYNE DDK35

This is a completely maintenance-free composite bearing made of polytetrafluoroethylene (PTFE) resin mixed with a special filler for low friction characteristics as well as optimal strength and dimensional stability of the metal. The phosphor bronze used for the backing provides excellent water resistance. This bearing is identical in construction to the DAIDYNE DDK05 with the lone exception that phosphor bronze is used instead of steel for the backing.

Features

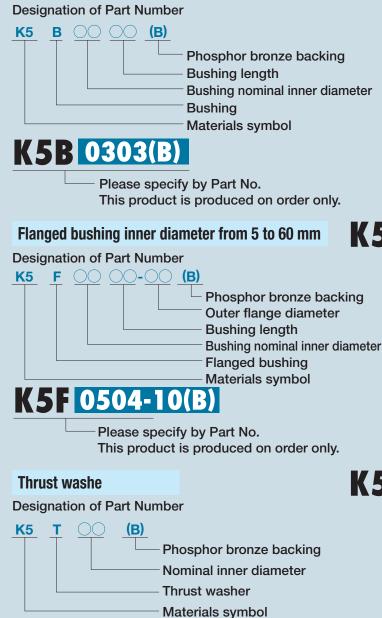

- 1. The basic features and characteristics of this bearing are identical to those of the DDK05. Refer to pages 54–57 for more information.
- 2. Provides superior water resistance compared with the DDK05.
- 3. Constructed of non-magnetic materials.

Suitable applications for DDK35

When using DDK35 for heavy-duty operations, the appearance of the bearing will change during breaking-in. Once broken in, the bearing surface will change to the greenish-grey color like a semi-metallic mat. The areas that bear the brunt of a heavy load will have a dull bronze color. In some cases, the bearing surface could exhibit feathers. These are all typical of a DDK35 that is well broken in and operating normally. Therefore, even though its appearance changes, there is no deterioration of the bearing's performance and it remains suitable for use in extremely long-term operations

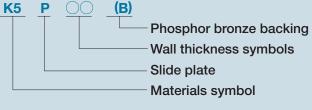
Designing DDK35

Identical to the DDK05. Refer to "Designing DDK05" on pages 55-57.


Prior to breaking in the bearing

Photographic cross-section of a DDK35 after breaking in and operating for a certain period of time.

DDK35 dimensions and specifications


K5T 06(B)

Please specify by Part No. This product is produced on order only.

Slide plate

Designation of Part Number

K5P 100(B)

Please specify by Part No. This product is produced on order only.

K5B 0303(B)

Dimensions are identical to the DDK05 flanged bushing. Refer to pages 62-63 for more information.

K5F 0504-10(B

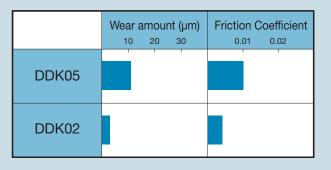
Dimensions are identical to the DDK05 flanged bushing. Refer to pages 62-63 for more information.

K5T 06(B)

Dimensions are identical to the DDK05 thrust washer. Refer to page 64 for more information.

Dimensions are identical to the DDK05 slide plate. Refer to page 65 for more information.

Polymer bearing DAIDYNE DDK02


This product is an environmentally friendly "lead-free bearing." The material structure of DAIDYNE DDK02 consists of multiple layers of PTFE resin + porous intermediate layer + steel lining (similar to that of DDK05) and due to the improvement of the sliding layer and porous layer, boundary surface performance and fluid lubrication have also improved.

Features

- 1. Offers excellent wear-resistance along boundary surfaces and under fluid lubrication.
 - Provides three to five times the wear resistance of DDK05.
- Offers low friction characteristics along boundary surfaces and under fluid lubrication. Even less friction than DDK05.
- 3. Excellent corrosion resistance Suitable for a wide range of applications.

Performance Comparison between DDK05 and DDK02

The following results show the comparison of the amount of wear and the friction coefficient under the conditions of lubrication using shock absorber oil.

Test Conditions			
1. Bushing Size (mm)	φ20×φ23×20L		
2. Speed (m/min)	3		
3.Specific Load (MPa)	19.6		
4.Clearance (Diameter)(mm)	0.08		
5.Lubrication	SAE#10,0.15 mm ³ /min		
6.Temperature	Room Temperature		
7.Shaft Material Roughness (µm Rmax) Hardness (Hv)	S55C 1.0 700		
8.Test Time (H)	100		

Standard Dimensions of the DDK02 Bushing

Thickness Dimensions of the DDK02 Bushing

(Unit:mm)

Bushing nomina	Thickness (T)	
min	max Thickness (T)	
-	<i>ф</i> 19	1.0 ⁰ _{-0.020}
<i>Ф</i> 19	Φ25	1.5 ⁰ _{-0.020}
Φ25	<i>\$</i> 40	2.0 ⁰ _{-0.025}
<i>\$</i> 40	<i>Φ</i> 60	2.5 ⁰ _{-0.040}
ϕ 60	<i>ф</i> 160	2.47 ⁰ _{-0.050}

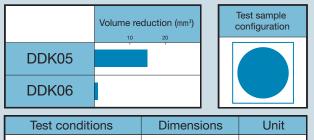
Identical to DDK05 bushings except for wall thickness tolerances. Please see pages 58 to 61 for DDK05 bushing dimensions.

RoHS ELV

The material structure of DDK06 consists of multiple layers of PTFE resin + porous intermediate layer + steel lining (similar to that of DDK05) and due to the improvement of the sliding layer and porous layer, boundary surface performance and fluid lubrication have also improved.

Features

- •Excellent cavitation resistance Approximately ten times better than DDK05
- Low friction characteristics of the boundary surface and fluid lubrication – Lower friction characteristics than DDK05


Performance Comparison between DDK05 and DDK06

The following results show the comparison of the amount of wear and the friction coefficient under the conditions of lubrication using shock absorber oil.

	Wear amou 10 20		Friction Coefficient 0.01 0.02	
DDK05		·		
DDK06				
Test Conditions				
1. Bushing Size	[mm)	φ20×φ23×20L		
2. Speed (m/min)	3		
3.Specific Load	3.Specific Load (MPa)		19.6	
4.Clearance (Diameter)(mm)		0.08		
5.Lubrication		SAE#10,0.15 mm ³ /min		
6.Temperature		Room Temperature		
7.Shaft Material Roughness (μι Hardness (Ην)	m Rmax)	S55C 1.0 700		
8.Test Time (H)		100		

- •Excellent wear resistance of the boundary surface and fluid lubrication (at low or intermediate load) – Three to five times better wear resistance than DDK05
- •Excellent corrosion resistance Wide range of applications

Results of Cavitation Testing

40×40	mm
0.3	mm
0.01 - 0.03	mm
19	kHz
600	W
Water	-
10 - 20	°C
1.0	mm
35	mm
3	min
	0.3 0.01 - 0.03 19 600 Water 10 - 20 1.0 35

Standard Dimensions of the DDK06 Bushing

Thickness Dimensions of the DDK06 Bushing	(Unit: mm)
---	------------

	· · · · · ·		
Bushing nomina	Thickness (T)		
min	max	Thickness (T)	
-	φ19	1.0 ⁰ _{-0.020}	
φ19	φ25	1.5 ⁰ _{-0.020}	
φ25	<i>φ</i> 40	2.0 ⁰ _{-0.025}	
φ40	φ60	2.5 ⁰ _{-0.040}	
φ60	<i>φ</i> 160	2.47 ⁰ _{-0.050}	

Identical to DDK05 bushings except for wall thickness tolerances. Please see pages 58 to 61 for DDK05 bushing dimensions.