Metallic bearing materials (lubricated metal)

MANUFACTURE

The use of bimetal or trimetal linings made of bearing alloys on a steel backing provides these lubricated metal bearings with good mechanical strength and makes them suitable for high-speed, high-load applications with proper lubrication.

Material properties

Bearing	Product No.	Equivalent		Chemical composition (%)								
material		SAE No.	Cu	Sn	Pb	Sb	AI	Ni	Si	Graphite	Characteristics	
White metal	W90	11	4	Residual		6					Excellent resistance to seizing, emebeddability, and conformability	
Copper alloy	B11		Residual	11							Sintered bronze withstands heavy loads.	
	LG21X	_	Residual	3	21						Solid lubricant embedded in bronze for excellent boundary lubrication	
	L10	792 797	Residual	10	10			<1			Superior impact load characteristics. Excellent wear resistance and corrosion resistance when using hardened axles.	
	L23	794 799	Residual	3	23			<1			Suitable for use at high speeds, with more lead than L10 and excellent tribological properties.	
	B05BS		Residual	6						Other Bi:0.5	Lead-free bearing materials with excellent resistance to both wear and seizing.	
	NB6X		Residual	6						Other Ni:3	Excellent resistance to both corrosion and wea especially in high heat at heavy surface pressur	
	CX4		Residual	10						Other Bi:0.5	Excellent resistance to fatigue	
Aluminum alloy	A20		1	20			Residual				Excellent load bearing characteristics	
	A17X		0.7	12	1.7	0.3	Residual		2.5	Other	Excellent performance non-seizing properties in heavy-duty, high-speed engines	
	A66T		1	6			Residual		6	Other	Lead-free bearing materials with excellent resistance to both wear and seizing.	
	A22E		1	12			Residual					

Typical design

CORPORATE PROFILE

142

APPLICATION

Standard dimensions for metal bushings

Nominal dimensions		Finished dimensions										
Bushing inner diameter	Housing inner diameter	Housing inner diameter	Axle diameter	Housing inner diameter	Bushing outer	Bushing Jenath	Thickness					
10	12	12 +0.018	10 f7 -0.013 -0.028	10 +0.015	12 +0.068 +0.043	5, 10, 15						
12	14	14 ^{+0.018}	12 f7 -0.016 -0.034	12 ^{+0.018}	14 ^{+0.068} _{+0.043}	5. 15. 20						
15	17	17 ^{+0.018}	15 ^{-0.016} -0.034	15 ^{+0.018}	17 ^{+0.068} _{+0.043}	10. 15. 20	1.0 -0.015					
18	20	20 +0.021	18 -0.016 -0.034	18 ^{+0.018}	20 ^{+0.086} +0.056	10. 20. 30						
20	23	23 ^{+0.021}	20 _{f7} -0.020	20 ^{+0.021}	23 ^{+0.086} +0.056	10. 20. 30						
22	25	25 ^{+0.021}	22 -0.020 -0.041	22 ^{+0.021}	25 ^{+0.086} +0.056	15. 25. 40	1.5 ⁰ _{-0.015}					
25	28	28 +0.021 0	25 -0.020 -0.041	25 ^{+0.021}	28 ^{+0.086} +0.056	15. 30. 40						
28	32	32 +0.025	28 -0.020 -0.041	28 ^{+0.021}	32 +0.115 +0.075	15. 30. 50						
30	34	34 ^{+0.025}	30 -0.020 -0.041	30 +0.021 0	34 ^{+0.115} _{+0.075}	15. 30. 50						
32	36	36 ^{+0.025} ₀	32 _{f7} ^{-0.025} _{-0.050}	32 +0.025	36 +0.115 +0.075	20. 40. 50						
35	39	39 ^{+0.025} ₀	35 -0.025 -0.050	35 $^{+0.025}_{0}$	39 +0.115 +0.075	20. 40. 60	2.0 ⁰ _{-0.02}					
38	42	42 ^{+0.025}	38 -0.025 -0.050	38 ^{+0.025} ₀	$42 \begin{array}{c} ^{+0.115}_{+0.075} \end{array}$	20. 40. 60						
40	44	44 0 +0.025	40 -0.025 -0.050	40 0 +0.025	44 +0.115 +0.075	20. 40. 60						
42	46	46 ^{+0.025}	42 ^{-0.025} -0.050	42 0 +0.025	46 +0.115 +0.075	20. 40. 60						
45	50	50 ^{+0.025}	45 ^{-0.025} -0.050	45 +0.025	$50 \begin{array}{c} ^{+0.115} \\ ^{+0.075} \end{array}$	30. 50. 80						
48	53	53 ^{+0.030}	48 -0.025 -0.050	48 ^{+0.025} ₀	53 +0.145 +0.095	30. 50. 80						
50	55	55 ^{+0.030}	50 -0.025 -0.050	50 ^{+0.025}	55 ^{+0.145} +0.095	30. 50. 80						
52	57	57 ^{+0.030}	$52_{\rm e7} \stackrel{-0.060}{_{-0.090}}$	52 ^{+0.030}	57 ^{+0.145} _{+0.095}	30. 60. 80	2.5 ⁰ _{-0.025}					
55	60	60 ^{+0.030}	55 ^{-0.060} -0.090	55 0+0.030	60 ^{+0.145} +0.095	30. 60. 90						
60	65	65 ^{+0.030}	60 -0.060 -0.090	60 ^{+0.030}	$65 \substack{+0.145 \\ +0.095}$	30. 60. 90						
65	70	70 ^{+0.030}	65 -0.060 -0.090	65 ^{+0.030}	$70 \begin{array}{c} ^{+0.145} \\ ^{+0.095} \end{array}$	30. 70.100						
70	76	76 ^{+0.030}	70 ^{-0.060} -0.090	70 ^{+0.030}	$76 \begin{array}{c} ^{+0.160} \\ ^{+0.095} \end{array}$	40. 70.100						
75	81	81 ^{+0.035}	75 -0.060	75 0+0.030	81 ^{+0.165} _{+0.100}	40. 80.100						
80	86	86 ^{+0.035}	80 ^{-0.060} -0.090	80 ^{+0.030} 0	86 +0.165 +0.100	40. 80.100	30 %					
85	91	91 ^{+0.035}	85 e7 -0.072 -0.107	85 0+0.035	91 +0.165 +0.100	40. 90.100	0.0 -0.03					
90	96	96 ^{+0.035} ₀	90 -0.072 -0.107	90 ^{+0.035} ₀	96 +0.165 +0.100	50. 100						
100	106	106 ^{+0.035}	100 -0.072 -0.107	100 ^{+0.035}	106 +0.180 +0.115	50. 100						
110	117	117 ^{+0.035} ₀	110 -0.072 -0.107	110 ^{+0.035} ₀	117 +0.180 +0.115	60. 100	3.5					
120	127	127 ^{+0.040}	120 -0.072	120 +0.035	127 +0.185	60 100	-0.035					

This is a made-to-order product, for which we maintain no inventory. Depending upon actual usage conditions, additional design work for oil grooves and

lubrication channels might be necessary. NB1: We make every effort to ensure that the dimensions and geometry of oil grooves and lubrication channels are optimally designed. NB2: When inner diameter finishing is performed after assembly, we manufacture a semi-product with sufficient finishing allowance built into the upper surface thickness.

When requesting design work, please attach your drawings to the Bearing Specification Sheet for Lubricated Bearings found at the end of this catalog and send both to Daido Metal.

144